
978-1-4244-7265-9/10/$26.00 c©2010 IEEE

A Secure Peer-to-Peer Web Framework

Joakim Koskela

Helsinki Institute for Information Technology

PO Box 19800, 00076 Aalto

Email: joakim.koskela@hiit.fi

Andrei Gurtov

Helsinki Institute for Information Technology

PO Box 19800, 00076 Aalto

Email: andrei.gurtov@hiit.fi

Abstract—We present the design and evaluation of a se-
cure peer-to-peer HTTP middleware framework that enables
a multitude of web applications without relying on service
providers. The framework is designed to be deployed in existing
network environments, allowing ordinary users to create private
services without investing in network infrastructure. Compared
to previous work, scalability, NAT/firewall traversal and peer
mobility is achieved without the need for maintaining dedicated
servers by utilizing new network protocols and re-using existing
network resources.

I. INTRODUCTION

Peer-to-peer (P2P) systems have been popular within net-

work research during the past years as they have the potential

to offer more reliable, fault-tolerant and cost-efficient network-

ing. P2P systems do not suffer from the same deployment com-

plications and performance bottlenecks that systems relying on

dedicated centralized servers often do. The research around

P2P systems has scrutinized topics ranging from architectures

and routing algorithms to use-cases and security issues. As

P2P networks have matured we see more applications leverage

the technology, and currently there are a myriad of applications

which (at least partially) are based on P2P models.

P2P web applications, or more generally a P2P adaptation

of the HyperText Transfer Protocol (HTTP), is an area that

has received a fair amount of interest. As HTTP is one of

the most widely used protocols, creating a generic P2P HTTP

architecture could enable a vast amount of existing services to

benefit from the advantages of P2P networking.

However, current initiatives focus only on specific HTTP-

based applications, replacing certain functionality with a P2P

overlay. For instance, current proposals on using P2P networks

for HTTP-based web services are based on migrating the cen-

tralized service discovery to a peer overlay while the service

requests follow a traditional client-server model. Furthermore,

these proposals often require dedicated servers or public peers

to bootstrap the system, and do not consider deployment on a

wider scale. Security and middlebox traversal are commonly

overlooked as well.

In this paper we present the design and implementation of

a secure P2P middleware architecture for HTTP-based com-

munication focused on deployability in the current global, and

mobile, Internet. The model is evaluated through performance

measurements in network environments typical for residential

users.

Compared to previous work and commercial solutions,

we present a generic model suitable for most HTTP-based

application, that can be deployed without investing in dedi-

cated infrastructure while addressing issues such as middlebox

traversal, mobility, security and identity management.

II. PEER-TO-PEER HTTP

From its launch in the early 1990s, the HyperText Transfer

Protocol (HTTP) had grown to be one of the most popular

protocols on the Internet today. It is used daily for everything

from past-time activities, such as recreational browsing, gam-

ing and media downloads, to business- and security-critical

applications such as payment systems and on-line banking.

The success of HTTP has clearly grown beyond its original

design as a simple, easy to manage protocol for exchanging

markup-based content. Today it is being chosen for a wide

range of applications, working in different environments and

in different models. The slight overhead of the text-based

protocol is clearly over weighted by the benefits of its wide

acceptance and the availability of tools and ease of develop-

ment.

HTTP follows a client-server model where the connections

are established from a client to a public server, often located

using the Domain Name System (DNS). This limits the use

of the protocol to service providers which have a public,

unblocked, access to the network and a fairly static Internet

Protocol (IP) address. This is not the case for most of the

devices connected to the Internet today.

The surge of wireless Internet access through mobile devices

has created a wide base of potential micro-service providers.

However, these hosts usually reside behind network address

translators (NATs) or firewalls blocking direct connections.

Furthermore, they might change network location at times,

and be accessible (on-line) for only short periods at a time.

Clearly, there are a number of obstacles to overcome.

Considering the huge amount of HTTP-based applications

present today, a generic P2P HTTP architecture could enable a

range of new uses for applications on the Internet with minimal

or no additional effort. The applications would not be tied to

the limitations of dedicated servers, but could tap into the

collective resources of the end-users, greatly expanding the

diversity of the available information and services. Personal

web pages and social sites would become truly personal,

reflecting the status of the user more precisely. Content sharing

and collaboration would be done on the users’ terms, without

the privacy concerns, censorship or other interference imposed

by a service provider.

III. RELATED WORK

P2P use of HTTP-based protocols is not a novel concept.

However, existing proposals often target only a specific use-

case or application, or have not been design to be deployed in

large networks.

P2P web services have received a fair amount of interest

through a number of proposals [1] [2] [3]. These proposals

depict architectures where end-users, the peers, act both as

the consumers as well as the providers of services, using a

distributed lookup mechanism for rendezvous. Although in

line with our goals, these proposals concentrate on distributing

the lookup, ignoring deployment details such as network

obstacles (middleboxes) and security issues.

Nokia’s Research Center has developed a personal mobile

web server for Symbian Series60-based smartphones [4].

This Apache HTTPD based software can serve both static

content and dynamic, context-dependent, pages written in

PHP or Python. These mobile web pages are thus able to

serve as a personal information center integrated with the

core mobile applications. For instance, information from the

phone’s calendar can be utilized as well as any photographs

or short messages present on the device. Compared to the

P2P web service proposals, connectivity has been carefully

addressed, as it presents one of the greatest challenges in

cellular environments. For reachability the system relies on

a public server for relaying the data traffic.

Opera Unite [5] offers a similar P2P web experience for

desktop computers. Instead of a dedicated server application,

it is based on JavaScript applications that are run within the

Opera web browser itself. As with the Nokia mobile web

server, it uses a centralized model for authentication and

rendezvous, and does not provide an interface for external

applications.

IV. SOLUTION MODEL

As ordinary end-users or organizations may not have the

resources or know-how to deploy supporting infrastructure, our

system was designed to re-use existing network services (re-

ferred to as overlay infrastructures) for lookup when establish-

ing connections. In contrast to many existing P2P protocols,

we do not use these overlays for exchanging application data,

instead we establish straight connections using the middlebox-

traversal capabilities of recent network protocols.

The system is designed to be deployed as a local daemon

acting as a proxy for HTTP traffic. An overview of the system

is presented in Figure 1.

A. Identity management

The P2P system uses a strong, public key-based identity

scheme. Peers are referred to using email-like identifiers (e.g.,

alice@example.com), which are tied to the public half of a

key pair. This key pair is used for authentication, and to

electronically sign and encrypt the data packets stored in the

P2P overlays.

Since users only deal with the identifiers, the names, of the

peers, we need mechanisms for securely binding the identifiers

Fig. 1. System overview. Storage services are used for lookup. Teredo or
HIP RVS for forwarding the initial connection packet, further data go straight
between the hosts.

to the public keys to prevent impersonation. This is done either

manually, through leap-of-faith (at the first encounter) or using

certificates issued by a trusted identity authority.

The first two mechanisms do not require interaction with

a third party, and are suitable even for ad-hoc or closed

networks. Using a trusted identity authority might seem to

break the P2P model, however, as these certificates are issued

beforehand, the authorities do not need to be accessible during

authentication.

Each peer maintains a database of the root certificates of

trusted identity authorities. Compared to public-key infrastruc-

tures, new identity authorities can be created at any time, for

any reason, and peers choose which ones to trust. For instance,

enterprises can maintain their own authority to issue identities

used in company-internal communication. At the same time, a

peer could also trust certificates issued by an authority created

for a close group of friends. Compared to previous proposals,

these identity authorities do not require a dedicated server, but

can be created and distributed offline.

B. Connectivity

As we do not rely on overlay routing, we need efficient

methods for traversing network obstacles that prevent direct

connections. Our focus has been on using existing, stable, and

widely available solutions; namely Teredo [6] and the Host

Identity Protocol (HIP) [7].

1) Teredo: Teredo is an IPv6 over IPv4 tunneling protocol

designed to traverse NATs and other network middleboxes

through the use of UDP encapsulation and hole punching

techniques [8]. Teredo uses a public server, Teredo server,

for initializing the connection between the Teredo clients,

removing the need for each client to have a public IP address.

The Teredo protocol is designed to be simple and light,

both in packet overhead and load. The server load is kept

minimal by only forwarding the initial packet and encoding

state into the Teredo IPv6 addresses. This has contributed to its

popularity, and Teredo is currently available for a wide range

of operating systems (including built-in support in Microsoft

Windows), with a number of organizations maintaining open,

free, Teredo servers.

Teredo does have a few drawbacks. The NAT traversal

method used is simple, and does not penetrate all types of

NATs.

2) The Host Identity Protocol: The Host Identity Protocol

(HIP) is a communication architecture that splits the notion

of locator and identifier through the use of cryptographically

generated identifiers. End-points are addressed using an IPv6

address constructed from the hash of their public key-based

Host Identity (HI). These non-routable IPv6 addresses, Host

Identity Tags (HITs), are translated into a routable address

by the HIP stack, adding a layer between the transport and

network layer.

Although not the primary purpose of HIP, an extension has

been developed for NAT and firewall traversal. This is based on

UDP encapsulation and the use of the Interactive Connection

Establishment (ICE) [9] to find an optimal route between the

hosts. HIP can also use rendezvous servers (RVS) and relays

to assist in connection establishment and NAT traversal.

There are currently a number of HIP implementations avail-

able for Microsoft Windows, Mac OS, Linux and FreeBSD.

Furthermore, organizations such as HIIT maintain free RVS

servers for public use.

C. Lookup

Connections are established using the information found in

registration packets stored in the overlay infrastructures. These

packets are published by the users, under a key matching

the hash value of the user name. Depending on the connec-

tivity methods in use, these contain IP addresses, addresses

of rendezvous servers and relays or other protocol-specific

information.

As these packages are signed, the system is able to use any

type of storage that offers a hash table-like indexing. These

are referred to as overlay infrastructures, and are ideally (as

the name suggests) fault-tolerant overlay networks such as

OpenDHT. But our concern is not how the storage is hosted,

but that it offers the required service. As we are able to use

multiple of these simultaneously, we can use redundancy to

create a sufficiently reliable system, even if the individual

storage services are unreliable or untrusted

This is one of the differences between our model and many

other P2P systems. We do not stress on building an optimal

overlay network for sharing the registration packets, but are

able to use a number of existing services for it, even simple

web-sites. This eliminates the need to deploy custom servers to

bootstrap the system, as the required components are already

in place.

Prime examples of these open, free, storage infrastructures

are different cloud-computing services such as Google’s Ap-

pEngine. It allows users deploy either Python or Java-based

web applications, and provides a simple storage API with

database features. Using the Google AppEngine, a suitable

storage back-end can be created with a few tens of lines of

code. Other possible infrastructures include Amazon’s Sim-

pleDB service, which offers similar quota-limited services for

free. Also, existing P2P networks, such as Gnutella or various

BitTorrent trackers could be used to distribute the registration

packets.

D. Application interface

Applications use the framework by registering HTTP-based

services at specific port numbers for the user’s identity.

For instance, an RSS feed generator run by the user Al-

ice could register itself at port 1000 for her identity, al-

ice@example.com. This feed is accessed by subscribing to

the address alice@example.com, port 1000, while using the

framework as an HTTP proxy.

The P2P system offers applications two ways for interaction;

as a standard HTTP proxy, or through URL-rewriting. The

HTTP proxy interface results in shorter, more natural, URLs,

but requires that the software supports the use of HTTP

proxies.

Using the URL-rewirting interface, applications issue re-

quests to the P2P proxy, indicating the target user and service

port as the first two path components. For instance, a request to

http://localhost:5050/alice@example.com/1000/get rss would

be forwarded as a request for /get rss to the service port 1000

of alice@example.com.

The HTTP proxy interface is much simpler. The target

identity is specified as the host name, but as the character @ has

special meaning (indicating a login name for authentication),

it is escaped with the sequence .at.. For instance, the

URL http://alice.at.example.com:1000/get rss would result in

a request to the RSS service in our example.

V. EVALUATION

The feasibility of the model is evaluated by measuring the

performance of the prototype implementation in a network

environment common for residential users. The goal was to

determine whether the technologies we outlined can deliver a

satisfactory user experience in the intended environments.

Three connectivity methods were evaluated. First using HIP

for both NAT traversal and security. Secondly using Teredo

only for NAT traversal. Finally we evaluated a combination of

Teredo and HIP. This configuration uses HIP for security and

mobility, but Teredo for NAT traversal. Although the native

NAT traversal of HIP is more efficient, it may require RVS

servers that are not as widely deployed or lightweight as

Teredo.

A. Test set-up

The evaluation was performed using the Linux-based proto-

type on a 2.2 GHz Intel Core 2 Duo desktop computer with 2

GB of RAM as client, and a 1.4 GHz Intel Core 2 Duo laptop

with 4 GB of RAM as the P2P HTTP server. These were

installed with the Debian GNU/Linux 4.0 operating system

using a standard 2.6.28 version of the Linux kernel. The HIP

for Linux (HIPL) version 1.0.4 stack was used for HIP and

Miredo 1.1.5 for Teredo connectivity. The implementation was

based on the HIP-based P2PSIP system presented in [10].

It was extended to support P2P HTTP connections through

TABLE I
ROUND TRIP TIME (RTT) BETWEEN NETWORK ELEMENTS.

Source host Target RTT

Serving Client 195ms

Serving Lookup 38ms

Serving Teredo server 187ms

Serving HIP RVS 194ms

Client Lookup 27ms

Client Teredo server 50ms

Client HIP RVS 1ms

an HTTP forwarding subsystem (offering both the URL and

proxy-based interface) and Teredo support.

We used for lookup a simple Google AppEngine storage

application consisting roughly of 20 lines of code. This appli-

cation offers an HTTP interface for storing and retrieving arbi-

trary blocks of data using 160 bit keys. Similar to the interface

offered by OpenDHT, each item has an expiration date and

can be protected from unauthorized removal by a password.

The default server for Miredo, teredo.remlab.net was used for

Teredo, and HIIT’s public RVS, ashenvale.infrahip.net, as the

HIP RVS server.

The evaluation was performed with the serving host behind

a NAT on a residential digital subscriber line (DSL). The

client host was placed 16 network hops away, on a different

autonomous system. This provided a realistic scenario for what

can be expected in terms of network quality for potential P2P

HTTP users. The average round-trip times (RTT) between

the network elements is presented in Table I to illustrate the

quality of the connections.

B. Connection delay

As a result of the required NAT traversal, the initial

connection establishment will be more time consuming than

any subsequent requests. Figure 2 show the average times

recorded over ten connections for each of the configurations.

The variance in the measurements were relatively low, and

common tasks (lookup and generation of the HTTP response)

took an equivalent amount of time for all configurations.

Teredo performs as expected, adding only the RTTs needed

to involve the Teredo server to the connection process which

results in the average of 1281 ms total. The HIP-based

connections showed worse performance. The HIP connection

establishment seems to add an additional 3000 ms to the

process, with the total averaging 4026 ms. Only a small

fraction (100 ms in processing) can be explained by additional

chores related to HIP (mapping HITs to IP addresses). As

this delay is present both when relaying through the RVS and

Teredo server, the HIP NAT traversal cannot be blamed either.

We found the problem to be due to the 2.6.28 version of the

Linux kernel dropping the first packet of the IPSec ESP BEET

tunnels created by HIPL. HIPL uses by default the kernel-

based IPSec, which results in the HIPL daemon being activated

to perform the BEX when a packet destined for a new HIT

is received. The first packet is subsequently dropped while

Fig. 2. Connection delays

Fig. 3. Average RTT and HTTP response times for each connection type.
Plain TCP HTTP connections were not possible as the serving host was behind
a NAT.

waiting for the BEX to complete. As the system uses TCP

for the P2P proxy connections, the connection is completed

only after the TCP retransmission timer expires, resulting in

the delay.

Although this issue may be addressed in future versions of

the HIPL implementation, it should be noted that this affects

only the initial connection set-up, not subsequent requests.

C. Latency

The latency was measured using pre-established connec-

tions, which provides a view of what the end-user would

experience after the initial request. Figure 3 shows the average

RTT measured (using ICMP ping packets) for each connection

type, and corresponding response times for the actual HTTP

content.

As expected, the figures are very similar between the

different connection techniques. After the initial set-up, each

protocol sends the packets directly between the hosts, adding

only different types of encapsulation. The slightly longer

times for the HIP-based connections can be explained by the

additional encryption.

Fig. 4. Measured throughput when using different connection types.

The HTTP response time is close to the theoretical RTT.

This is approximately half of the time required by a traditional

HTTP request, which needs two RTTs to complete the three-

way handshake of TCP.

D. Throughput

The throughput was measured as the maximum rate at which

the serving host can deliver data over a TCP connection. The

measurements were done using the iperf network performance

measurement tool. Figure 4 shows the results when using the

three different connection techniques as well as without any

encapsulation (plain TCP) as reference.

It should be noted, as seen on the graphs, that these are

highly susceptible to external influences (other users, link

quality and ISP policies), but provide still a glimpse of the

affect of these protocols on the performance.

As the figure shows, the encapsulation does have a notice-

able affect on the overall bandwidth. Both HIP and Teredo

decreased the maximum bandwidth from 426 Kbit/second to

394 Kbit/second, a decrease of 8%. Perhaps surprisingly, the

HIP / Teredo combination resulted only in an additional 1.5%

decrease from that value, with a maximum bandwidth of 388

Kbit / second.

E. Packet overhead

Figure 5 compares the total IP packet size generated by a

238-Byte HTTP request using the different connection types.

As the figure shows, Teredo and HIP add approximately an

equal amount of overhead to the data packets (40 and 42 bytes

in this example, although the ESP header length may vary

due to padding). This corresponds quite well to the measured

throughput. It should be noted that although the Teredo / HIP

combination adds the most overhead, it is only 42 bytes more

per packet. Although this is roughly a 33% increase in the total

amount of overhead compared to plain Teredo, it is below three

percent of a typical MTU of 1500 bytes.

F. NAT traversal

Estimating the success rate of NAT traversal is difficult, as

there exists dozens, if not hundreds, of different manufacturers

using different NAT policies even within a single product line.

Fig. 5. Comparison and content of a packet containing 238-bytes of
application data produced by the different protocols.

The results presented in [11] provide one estimate of the

types of NATs deployed in the Internet in 2005. Although these

figures are based on observations of limited set, the fact that

82% of those did support the UDP “hole punching” technique

used by both Teredo and HIP provides an indication that

most NATs would be traversable using these protocols. Also,

HIP does specify an extension for using triangular routing

through HIP Relays [9], in case both end-points are behind

untraversable NATs.

G. Load on storage

During our evaluation, we observed that storing a registra-

tion packet generated roughly 2 KB of upstream and under 200

bytes of downstream data in total. A single lookup resulted in

approximately the same amount of data, although in reverse

directions. Storing a packet in the AppEngine database was

estimated to consume roughly 2 KB of storage space.

Considering a system of 2000 users updating their status

once per ten minutes (as was the default in our prototype),

maintaining the system would generate approximately 550 MB

of upstream and 55 MB of downstream traffic in 24 hours,

with 4 MB stored in the database at any time (assuming old

packets are discarded). Assuming that each user would contact,

on average, five new peers per hour it would add another 46

MB of upstream and 460 MB of downstream traffic. This

interaction would total in slightly under 600 MB upstream

and 510 MB downstream traffic per 24 hours, with 4 MB of

data stored at any given time.

Currently the Google AppEngine limits its free service per

application to 1 GB of data transfers in either direction per 24

hours, and 1 GB of storage. This is well within our theoretical

limits for a 2000 user population. Considering that most users

are not constantly active, we could support much larger groups

as well with only a single application. For instance, assuming

that 70% of the users log in each day, remaining active on

average for 4 hours per day, we could support 17000 users

with the same network load.

To validate our assumptions, we experimented with a small-

scale simulation of this storage use. We created an application

mimicking the requests made by the client to the storage

system, and deployed it on 450 nodes on the PlanetLab

network. We ran the application for five days using as storage a

single Google AppEngine instance. Each one of the PlanetLab

nodes made a registration request using actual registration

packages (and unique identifiers) once per 10 minutes, and

requested a package five times per hour.

Before each reset of the Google AppEngine quota counters

we recorded the amount used during that 24 hour period. The

results were in line with our assumptions. The storage quota

never exceeded noticeable amounts, and bandwidth use was

only 8% of the downstream and 14% of the upstream traffic

quota.

H. Usability and overall impression

As the work we have done has been to combine and

explore technologies that enable ordinary users new ways to

communicate, the ease of use of any solution is paramount.

We need to consider issues such as ease of installment, the

complexity of configuring it and what would be the driving

force to adapt the system.

Through our experiments with the prototype, we have

recognized that these are problems not easy to overcome. The

installation of the software has, even though currently a mere

prototype, been made easy through an graphical user interface.

Most modern Linux distributions today support the needed

protocols (such as IPv6 and IPSec) out of the box, and have

well-developed software package management systems. The

situation is different on other platforms (Microsoft Windows

and Mac OS), but as noted, current Windows versions have

native support for Teredo, and with the help of software such

as OpenHIP, HIP support is possible.

The ease of use requires work. During our evaluation, we

tested two use-cases; file sharing and personal photocasting.

The KDE personal file server (Kpf), a small web server of the

K desktop environment, was configured to serve content over

the P2P system, accessed by desktop browsers. For the second

use-case we implemented a simple utility that creates a pod-

or photocast RSS stream from the contents of a media folder,

which was accessed by a standard podcast client.

The client applications were in general quite easy to config-

ure. Desktop browsers can easily be set to use the HTTP proxy

interface of the prototype, resulting in intuitive and memorable

URLs for the user (e.g., http://alice.at. p2pship.org/media).

The podcast client lacked support for HTTP proxies, but could

use the URL-based interface (although this resulted in a longer

URL).

Configuring the software of the service provider was harder.

According to the design, these need to be registered with the

P2P proxy in order to receive requests. As the podcasting

application was made specifically for the evaluation, it was

easy to integrate this registration. But for existing applications,

such as Kpf, this needs to be done either manually or by a

separate application.

Making this integration easy is something still to be solved.

We imagine plug-ins could be constructed for applications

that support such extensions. The P2P proxy itself could also

feature an extensions scheme allowing users to construct and

easily distribute add-ons which link specific applications to

the system. Following Opera Unite’s model, we could con-

sider integrating a scripting engine and support applications

specifically built to run in this P2P environment.

VI. CONCLUSION

Although our prototype displayed good performance and

provided the type of services we were looking for, finding

applications that will attract users is a challenge. As seen with

Opera Unite and the Nokia Mobile Web Server, the concept

has been recognized by others as well, but it is still lacking a

clear direction.

The main message of this paper is that the technology

needed for creating private P2P overlays is available today for

ordinary end-users, it is only lacking the proper packaging.

Although a killer application for P2P web applications would

surely result in a wide roll-out of similar systems from

commercial vendors, we argue that these service providers are

not needed as the necessary technology is already in place.

The existing infrastructure of today enables us to create new

networks without being dependent on a single vendor. In this

paper, we have concentrated on networks built on the HTTP

protocol, but the model can be extended to other protocols as

well.

REFERENCES

[1] F. Banaei-kashani, C. chien Chen, and C. Shahabi, “Wspds: Web services
peer-to-peer discovery service,” in In Proceedings of the International

Conference on Internet Computing, 2004, pp. 733–743.
[2] G. Gehlen and L. Pham, “Mobile web services for peer-to-peer applica-

tions,” in Consumer Communications and Networking Conference, 2005.

CCNC. 2005 Second IEEE, 2005, pp. 427 – 433.
[3] C. Schmidt and M. Parashar, “A peer-to-peer approach to web service

discovery,” World Wide Web, vol. 7, no. 2, pp. 211–229, 2004.
[4] Mobile Web Server, http://betalabs.nokia.com/betas/view/mobile-web-

server.
[5] Opera Unite, http://unite.opera.com/.
[6] C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network

Address Translations (NATs),” RFC 4380 (Proposed Standard),
Internet Engineering Task Force, Feb. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4380.txt

[7] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP)
Architecture,” RFC 4423 (Informational), May 2006. [Online].
Available: http://www.ietf.org/rfc/rfc4423.txt

[8] B. Ford, P. Srisuresh, and D. Kegel, “Peer-to-peer communication across
network address translators,” in ATEC ’05: Proceedings of the annual

conference on USENIX Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2005, pp. 13–13.

[9] M. Komu, T. Henderson, P. Matthews, H. Tschofenig, and
A. Kernen, “Basic HIP Extensions for Traversal of Network
Address Translators,” Oct. 2008, work in progress. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-hip-nat-traversal-05.txt

[10] J. Koskela, “A HIP-based peer-to-peer communication system.” in
ICT2008: Proceedings of the 15th International Conference on Telecom-

munications, June 2008, pp. 1–7.
[11] S. Guha and P. Francis, “Characterization and measurement of tcp

traversal through nats and firewalls,” in IMC ’05: Proceedings of the

5th ACM SIGCOMM conference on Internet Measurement. Berkeley,
CA, USA: USENIX Association, 2005, pp. 18–18.

